Nanotube forests that are darker than night

Oct 03, 2019

ON SEPTEMBER 13TH a 16.78-carat yellow diamond, worth $2m, which was on display at the New York Stock Exchange, disappeared from view. Police were not, however, called to the scene. The disappearance was intentional. The diamond, part of an artwork called “The Redemption of Vanity”, had been coated in a “super-black” layer of carbon nanotubes which, by absorbing 99.995% of the visible spectrum, made the usually sparkling gemstone seem practically invisible inside its dark case.

“The Redemption of Vanity” was a collaboration between Diemut Strebe, artist-in-residence at the Massachusetts Institute of Technology, and Brian Wardle, the institute’s professor of aeronautics and astronautics. Whatever moral message this artistic endeavour might or might not have been intended to convey, it was a stark demonstration of allotropy—the fact that a single element can come in many guises, depending on the arrangement of its atoms. For, like Dr Wardle’s nanotubes, diamonds are made of carbon. And that allotropic diversity is one of the reasons why carbon is such a useful material.

The idea of creating super-black surfaces out of carbon nanotubes is not in itself new. Vantablack was developed by Surrey NanoSystems, a British company, and put on the market in 2014. Vantablack, however, absorbs only 99.965% of the light incident upon...


Other news

Cookies help us deliver our services. By using our services, you agree to our use of cookies.