Networks of cameras are making it easier to track meteors

Mar 28, 2019

EVERY DAY between 100 and 600 tonnes of rock hurtles into Earth’s atmosphere. The reason so little of this bombardment makes it to the planet’s surface is that much of it is burnt up by atmospheric friction, which creates the fireball that is the visible sign of a meteor’s arrival. As for the bits that do get through, once landed, they are known as meteorites.

Roughly 60,000 objects of meteoritic origin have been picked up and catalogued. Most are fragments from a much smaller number of individual falls. Of these falls, only 36 were observed as they arrived with enough fidelity to calculate the orbit of the original meteor before it entered the atmosphere. If more such data were available it could, by showing where the rocks came from, cast more light on the composition of the solar system. It might also help in moving orbiting spacecraft out of danger.

The tracking of meteors is carried out by arrays of cameras on Earth. The oldest of these is the European Fireball Network (EFN), which dates back to 1951 and is operated by the Astronomical Institute of the Czech Academy of Sciences. When it launched its equipment was primitive—two groups of eight cameras capturing images on glass photographic plates using all-night-long exposures. Each camera group covered half the sky. Now, the network deploys 24 state-of-the-art...

Other news

Cookies help us deliver our services. By using our services, you agree to our use of cookies.